SPEAR Maths Sample Pack

A comprehensive framework that:

- supports teaching and learning in Maths problem solving
- is easy to use
- is flexible
- promotes independence
- encourages the transfer of process skills
- includes a resource of over 550 problems
- has been fully updated in line with the 2014 Curriculum

The Challenge

- Problem solving in Maths is under-developed in many primary schools
- Few primary school teachers are Maths specialists
- Maths problem solving is complex
- Many teachers feel they should do more problem solving in Maths but don't know where to start
- The 2014 Curriculum centres on problem solving but provides little guidance or support for this
- Pupils often struggle to transfer knowledge and understanding to unfamiliar contexts

The Framework

- A five step process which children can understand, remember and use
- Supported by a comprehensive range of materials: graded problems, records, self evaluation sheets, etc.
- Linked to the NC but not restricted to it or by it
- Accessible to children of all ages and abilities from EYFS to Y7 and above
- An ideal resource to use alongside schemes such as Singapore Maths

Sample Pack

The contents of this sample pack have been selected to give you a clear understanding of what you get when you purchase a licence for using SPEAR Maths.

Overview of SPEAR Maths Contents

Activity Records
Activity record sheets for each type of problem as well as general and simplified record sheets.

There are $\mathbf{7}$ different Activity Record Sheets in all.

Help Me Cards

Help Me Cards for each stage of each type of problem (a common SEARCH card and specific cards for PLAN, EXPLORE, APPLY and REVIEW for each problem type).

Also, the same information organised into Help Me cards for each Level of each problem type and for each Year Group (2014 version)

All: SEARCH

Level	Talk to an adult about what you are doing
$\mathbf{1}$	With help, find different ways to do it or put things in order
$\mathbf{L e v e l}$	With a little help, decide how you are going to start With a little help, decide on what's important to think about
	Tell an adult how you will use something you learned before to solve this problem
$\mathbf{L e v e l}$	Use pictures, writing, numbers and talk to explain exactly how you could solve the problem
Talk about how to tackle the problem,	
remembering what you did with similar	
problems in the past and explaining the	
steps to take	

2014 Versions

There are 46 different Help Me Cards in the SPEAR Maths resources

	Tel an adult how you will uase something you leamed before to solve this problem
	Tel an adult your plan for solving the problem
	With a little help, explain the problem in your own words to an adult and say which bits are important
	With help, choose the apparatus you need to solve the problem and draw any pictures that will help you
	Find all the answers that you can
	With a little help, highlight the words and numbers in the problem that are important and say why you have chosen them
	With a ilittle help, deode how to solve the problem one step at a time
	Remember that you can chocse which clue to start with
	Explain why some clues go together to tell you something important
	With a littie help, make drawings about the problem you are warking en to show how you will da it
	With a little heip, taik about different ways to show the information in the problem and explain which you prefer
	Explain to an adult what would happen if the problem was changed
	Write or drow what you have done and what you have found out in the best woy you can think of so that other people can understand
	Talk to an ad ult about whether if it would help to start with the smallest number
	With a little help, fill in an empty table given to you by an adult by putting the information you have in the right places
	With a littie help, deode whether to add (+), subtract (-), multiply (x) or dwide (-). If you need to do more than one of these, deside which you need to do first
	Explain to an adult why you are sure you have faund all the possible answers
	With a little help, explain how you know that your answer is right
	With a little help, look for missing answers (and answers you have written down twice) by organising what you have found but
	With a little help, look for answers you have wnitten down twice
	Try to remember to say what units your answer is mossured in

Key Questions

Key questions in SPEAR Maths colours at three levels of difficulty (Y12, Y34 and Y56)
Specific Key Questions for each type of problem

There are $\mathbf{8}$ different question sheets in all.
Next Step Records
General pupil records for all problem types (Landscape and Portrait layouts) organised in Levels and year groups (2014 version)

Sample

Next Steps Record for All Problem Types

Level		Date
$\begin{array}{\|c} \hline \text { Level } \\ 1 \end{array}$	- be aste to cree cemirctay language to talk about their weik	
	with segoort, be abie to meka connections and ule prick krowedge to solve simitar practical croblento in a new corkext	
	with suppot, be able to 'act ouk' a simple protiem wetin a smal grow	
	with spport, be able to use praticol resources to revesok assects of a probiem	
	- be ablo to desonbe werhally, or whth resources, passible solifors to a prociem	
	be azio to coum accuractr the number a possibie solitions to a smeie probien	
	be able to understand a 'not' stoternera in the costext of a smple pxotiem $\{2)$	
	- with supoort, be able to record satitore using simole piktures, diagrams of resourdes	
	them (Fap)	
	- mith sioport, be able to understand her concoics eq vat ine numbe cl pessible solutiors increases weth tha number co optiors avelsole (RDP)	
	- With shipoct be able to drock a ocdut on foc a ample pritiken and be able ko 	

Sawe 2013
Pupil records for each type of problem. There are 13 different Next Steps Records to choose from.

Target Cards

Target cards for Levels 1-5 (three versions). Also Target cards in individual year groups (2014 version)

Year 4 Targets for Maths Problem Solving	Date
1 can use pictures, writing, numbers and talk to explain exactly hom I could solve the problem	
Wth a fittie helo, 1 can talk soout how to tackle the problem, remembering what I did with simelar problems in the past and explaining the steps to take	
With a Eittle helo, I can choose the apparatus I neod to solve the problem and draw any pictures that will help me	
With a litie helo, I can explain the problem in my own words and say which bits are important.	
With a litte heop, I can docide what will be the best way to record the information I need to collect	
1 can plan a step ay step approach to solving the problem	
1 can look for pattems in my answers and group similar answers togesher	
can see if 1 can start with the smallest number of choices first	
With a little help, I can think about which clue to start with and explain why I think this	
I can iook for clues that go together to tell me something important and use this information to solve the problem	
I can draw diograms or pictures to show the information in the problem in a nea way	
With a sttie help, I can think of diferent woys to show the information in the problem and explain which I arefer	
1 can deode if it would helo to start with the smallest number	
With a litte helo, I can explain any pattems I have noticed in my results, using the appropriate mathemstical vocabulary	
I can say what I think the next few numbers in the pattern will be and try and find out if I am right	
I can fil in a table given to me by an adutt by outing the information I have in the right places	
I can deode whether to add (t), sibtract $(-)$, mution (x) or divide ($;$), If I need to do more than one of these, I can decide which I need to do first	
I can use mathematicat ideas to explan to an aduit whyl I om sure I have found st the possible answors	
Without being todd to do it, I can try to look for missong answers fand answers I have witten down twice) by orgonising what 1 have found out	
Withait hela, I can explan how I know that my answe is magt	
With kep, I can make sure I said what ony answer is measured in	

gawe 2014

Self Evaluation Sheets

Self Evaluation Sheets for each type of problem with or without a teacher's column.
eif Evaluation: Logic Problems
Self Evaluation: Finding Rules and Describing Patterns

There are $\mathbf{1 0}$ Self Evaluation Sheets in all.

SPEAR Graphics

SPEAR graphic with key questions for each problem type:

Simplified SPEAR graphic with icons for younger children:

There are $\mathbf{1 0}$ documents like this in all.

Teachers' Manuals

Teachers' Guides for each type of problem containing Statements of Attainment with examples of achieving each objective and suggested next teaching steps.
The same information compiled into a comprehensive teachers' guide covering all problem types.

SPEAR Maths Next Steps Teachers' Guide with SPEAR Colours

Level	Descriptor	Example	Next Teaching Steps
Level 1	be able to use everyday fanguage to talk about their work	With same prompts is able to explain what has been done using mathematical language eg' 't put two cakes on Teddy's plate and tiree cakes on Humply's plate and that makes five altogether'	Create opportunities for children to explore and discuss patterns (ea pattems or Lego bricks in a model) using mathemstical tanguage
	- wath support, be able to make connections and use prior knowledge to solve similar practical problems in a new context	With support, engages with practical mathematical activities involving sorting, counting and measuring by direct comparison eg can find different ways to dress teddy, can orcer cars in a line, can find out how mary cars can be made using eicht wheels	Create opportunities for children to find lots of possibilities eg find different ways to malve a cower with three coloured blocks Give children opportunities to choose useful resources from a limited range of resnurces
	- witb support, be able to 'act out' a simple problem wathin a small group	With support eq posis a picric for the Three Bears, lays the lable for the Three Bears; solves practical problems involving counting, adding, subtracting in the cantext of numbers, measures or money	Create opportunities for childeren to act out a wide range of mathematical problems irsolving numbers, messures or money with mare independence
	- wath support, be abie to use practical resources to represent aspects of a problem	With support eq chooses criterias to soet huttons, shows that toy cars can be lined up in different orders	Create opportunities for children to identify the mathematical knowiedge needed to solve a problem ea by using coins to buy items of shopping
	- be able to describe verbally, or with resources, possible soliutions to a problem	Is able to explain eg the blue car is biggest because it's longer, there are five sheep and seven cows,' 'there are three dolls and six nats, 30 the dells can have two thats each	Create opportunities for pupils to listen to each other's explanations, try to make sense of them, compare and contrast, evaluate.
	- be able to count accurately the number of possible solutions to a simple problem	With some support, is able to say eg there are three ways to have two plates of cakes with two cakes altogether ($1+1,2+0$ and $0+2$	Create opportunities for pupils to start to make connections and begin to apply their knawledge to new stuations eg to nozngרise that the number of ways to throw three bean bags into two buckets involves the same pattern as the number of ways to put treee seples in two bowis
	- be able to understand a 'not' statement in the content of a simple probiem (L)	Is able to explain eg that 'the ball is not on the top shelf" means that the ball is on the midde or the bottom shelf of a three shelf tookcase	Create opportunities for pupils to practice 3pplying their understanding of 'not' statements in a range of increasingly challenging contexts eg include an extra shelf and an extra toy

SAWE 2013

A new teachers' guide organised into year groups (2014 version)

Year	Descriptor	Example	Next Teaching Steps
Year 4	- be able to explain an approach to a simple problem crally, with written jottings to support the expraration, with some evidence of reasoning	Is able to put the problem into their own words and use a wide range of pictures, diagrams and some mathematical symbols to comenunicate their thinking or demonstrate a solution or process; is able to make a generalisation with some assistance of probing questions or prompts; when they have solved a problem, is able to pose similar problems for a partner	Creatr opportunities for pupils to experience a broadening range of problems of different types, asking them to make suggestions about how they might tadile each one and encouraging them to try different approaches, making connections to previous work e] explore ways to navigate a mare finding a routh that totals 100
	- with limited support, be able to use discussion to break into a probiem, recngnising similarities to previcus work and identifying strategies to use in solving the problem	With limited support, is begiming to try a variety of appruaches to overcome difficulties when solving problems eg whers covenng an area with ractangular tiles; with limited support, is able to break up a complicated task into smaler steps in order to make a start; is able to answer questions to clarify a probiem; with limited support, is able to show understanding of a general statement by finding examples that match it eg 'If you add two odd numbers you get an even number'	Create opporturities for children to make choices about how they intend to approach a problem and then to explain the thinking behind the choices made, using language such as 'it can't be... because." Create opportunities for pupils to discuss, and show understanding of general statements that are true by finding examples that match It and statements that are faise by giving pounter examples eg Sam wayz 'ail numbers endion in 4 are in the $4 x$ table. Is Sam corrnct 7
	- with limited support, move from 'acting out' to working with practical apperatus or diagrams to solve the protiem (DVP) (FAP) (FRDP)	With limited support, is abie to choose appropriate practical resources, including resources that are not immediately avafabie, and use these resources effectively to treak into probiems of different types.	Oreate opporturities for pupils to choose, and use, formal problem-solving strategies; encourage pupils to move quickly on from 'acting out' to mare formal strategies; encourage pupits to think creatively to search for a solution to a problem eg by asking questions such as 'how are you paing to shaw the rest of the dabs what you did?' and 'isthere another way you could do this?"
	- with limited support, be able to put the probbem into their own words and identify the important information needed to solve it	With limited rupport, is able to tackle and solve one-step problems involwing numbers, money or measures including time using Y4 content: with limited support, is able to tackle	Creste opporturvties for pupits to practise reframing a problem eg by potting it into their awn worts, by explaining it to a peer, by discussing it in a group, by presenting to the

Pupil Passports

Suggested collections of graded and ordered problems arranged termly for Y1 to Y6 classes. Each passport contains a mixture of problem types of increasing levels of difficulty and includes a brief description of each problem and necessary prior knowledge:

There are 6 Pupil Passports in all.

Problems

Over $\mathbf{5 5 0}$ problems covering Levels 1-5 and all problem types in an easy to use searchable database. In addition, there are EYFS ideas for Maths problem solving. New problems are being added all the time. Many problems now include ready-made resources such as empty tables, as well as extension and support materials.All problems include complete answers.

Early Years Ideas

These activity sheets are intended to be used by adults to inform their support of pupils as they experience learning opportunities. Each sheet includes an activity, resources and focusing and extending questions, as well as key objectives:

There are 25 EYFS activites.

A complete problem:

Here is an example Y1 problem with answers, resources, simplified version etc:

P2
Down the Path

Answer to P2 Down the Path
$1+5$
$2+4$
$3+3$
$4+2$
$5+1$

Notes

Some children may find the idea of the robot starting on 2 confusing. For this reason, you may wish to use the simplified version of the problem on the next page. This generates exactly the same answers but without the complication of starting on 2 .

Diagram and Visual Puzzles

There are currently 70 separate Y1-Y6 DVP problems in the Problem Bank:

9xem.

$n=$

D61 Ski Lift +

(40

)

 brtemen wach per of phed antern it oost

 tren treisyo comer
Nobe therearetarat mpation itert
:

D38
Garden Pond

Logic Problems

There are currently 109 separate Y1-Y6 Logic problems in the Problem Bank:

55x, wix

L29

Nicknames

 Dow, Mark, fesh ma timare frendr They ecet howed *phasi ther nis

Finding All Possibilities Problems

There are 152 separate Y1-Y6 Finding All Possibilities problems in the Problem Bank:

P104 Tracksuits +
1\% 1

 of sackid eitheat impong

Her nary different parible arfits are there?
 Sive ywe thating

[^0]
avex ain

2Nome

Finding Rules and Describing Patterns Problems

There are 95 Y1-Y6 Finding Rules and Describing Patterns problems altogether:

(20. Nai
R36 Handshakes

$1=8=8$
$8=9$

Tri startry sem diftereet pors of nembez. Docr the cion form 4 lop?
Top ther
istation with I, i)

R27 Sequence of Shapes

Cen puan hor the patturn ilowiapu? Whika talk of juw Naity

Kow mory ates wit thers be in shepe wor tevemry abes al there be in shepe socp

Find agetera nve for ton now sute Here arin ybued.

R44
Square \& Triangular Numbers

*ยะะ:

Word Problems

There are currently 125 Y1-Y6 Word Problems in the SPEAR Maths Problem Bank:

W2
Stickers
 ensk bois tor avope

 ihoes and iz wote stcheri
 wary inchers ax ther it a fall beet?

(10)

W38
Reading Rate

 nave pass 41 I cead on Thessbyy

 nyes 61 I rool on Mandyp

fach dep I rus I nere pays thas tie de sfore onk idy. 1 got is payss, iten

Oquis.

Uise onty the digts 1.2, 1, and 4 (one of ach)
 Nives as wew 1 as
tere secowiotynther terien) $\quad 2+3 \cdot 4 \times 1=1$
tare a ceatuation that tatelt 40: 43-2-1 $=40$

Cerpumbinextramte
five 10 to
Checkes may te werk nateratival hy

Find as may dfferent wosi at youcan to conplete the followng eqkiant

Ohunae par chamer ints groag of anior thed

Other Resources included in SPEAR Maths

A range of blank two way tables for use with Logic Problems

Coming Soon

- US versions of all materials
- Materials for KS3
- Improved notes and resources
- More simplified problems to use with less able pupils

[^0]:

